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Abstract 
Purpose: The area under the curve (AUC) is commonly used to assess the extent of exposure of a drug. 

The same concept can be applied to generally assess pharmacodynamic responses and the deviation of 

a signal from its baseline value. When the initial condition for the response of interest is not zero, there 

is uncertainty in the true value of the baseline measurement. This necessitates the consideration of the 

AUC relative to baseline to account for this inherent uncertainty and variability in baseline 

measurements. 

Methods: An algorithm to calculate the AUC with respect to a variable baseline is developed by 

comparing the AUC of the response curve with the AUC of the baseline while taking into account 

uncertainty in both measurements. Furthermore, positive and negative components of AUC (above and 

below baseline) are calculated separately to allow for the identification of biphasic responses. 

Results: This algorithm is applied to gene expression data to illustrate its ability to capture 

transcriptional responses to a drug that deviate from baseline and to synthetic data to quantitatively 

test its performance. 

Conclusions: The variable nature of the baseline is an important aspect to consider when calculating the 

AUC. 
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Introduction 

In pharmacology, the area under the plot of plasma concentration of a drug versus time after dosage 

(called “area under the curve” or AUC) gives insight into the extent of exposure to a drug and its 

clearance rate from the body. By integrating over time rather than looking at individual concentration 

measurements, a more accurate estimate of the overall exposure to the drug is obtained (Kwon 2001). 

Such measurements have also been found to be meaningful for assessing the net pharmacologic 

response to a given dose of drug (Krzyzanski and Jusko 1998). 

More generally, a similar measure can be calculated for any quantitative response that deviates from its 

baseline measurement. For instance, when analyzing gene expression data, one might not be interested 

only in which genes are activated or suppressed; it could be more informative to also consider the 

extent to which gene expression is perturbed for full periods of time. Many existing algorithms for 

analyzing gene expression data do not take the time scale into account, similar to an ANOVA where each 

time point is treated as a different condition (Tusher, Tibshirani et al. 2001); others take the ordering of 

points into account, but not the length of time between points (Ernst and Bar-Joseph 2006). This could 

be problematic because many experiments have high sampling frequencies immediately after the 

experimental perturbation (e.g. drug administration) and much lower sampling frequencies as the 

response measure slowly recovers. Using the AUC to evaluate the extent of the transcriptional response 

of a gene does account for the temporal ordering of samples and the period of time between samples. 

When the AUC is calculated for an exogenously administered drug that is not endogenously produced, it 

is known that the initial concentration is zero and, eventually, the drug will be eliminated and the 

concentration will return to zero. However, if there is some nonzero baseline value for the response of 

interest, it becomes less clear how to accurately calculate the AUC. For instance, gene expression values 

are not typically zero under normal conditions. But even if this is taken into account, the baseline cannot 

be expressed by a single constant value. It also has some variability. In particular, a gene regulated by 

the circadian clock has widely different expression values throughout the day, but even in a case where 

a gene expression profile is flat, normal biological noise will perturb the gene transcript abundance from 

its mean value. Because pharmacologic experiments are typically performed with limited numbers of 

replicates, incorporating variability in baseline values into the AUC calculation becomes important. 

Thus, we have developed an algorithm to calculate the AUC for a pharmacologic effect such as gene 

expression relative to a variable baseline estimate, which can be used to discover significant net 

responses such as transcriptional regulatory effects in gene expression data. This allows for the 

segregation of responses into categories representing up-regulated, down-regulated, and biphasic 

responses that take into account both positive and negative changes in values. Its performance is 

assessed by running simulations on synthetic data. Additionally, the method is applied to real gene 

expression data studying the response to acute corticosteroid treatment in rat liver (Jin, Almon et al. 

2003) to test its ability to select biologically relevant genes. 
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Materials and Methods 

The general idea of the proposed method is to estimate both the overall AUC (called “AUC”) and the 

baseline AUC (called “baseline”) for each pharmacologic measurement, and then to compare these 

values to determine if the AUC significantly deviates from the baseline. Thus, first we define how these 

two values are calculated. 

Estimating the baseline and its error 

A simple, ideal experiment would produce frequently-sampled and precise data from both a treated 

group and control group, facilitating the direct comparison between these two groups. Real experiments 

are often constrained by limited resources so that they do not meet this ideal standard; for instance, a 

control group may only be available at a single initial time point rather than at every experimental time 

point. Depending on the system being studied and the available experimental data, and assuming no 

measurements are made at negative time points, there are generally three different situations in which 

the baseline may be estimated using different methods: 

1. Baseline is estimated from measurements at only t=0 

2. Baseline is estimated from measurements at t=0 and t=Tlast, for values that return to baseline by 

the end of the experiment 

3. Baseline is estimated from a separate control group with measurements collected at each time 

point 

For the first definition, if no separate control group is available and the only baseline measurement is 

taken before treatment, baseline can only be estimated from the values at this single time point. Then, 

the baseline is computed by assuming the response stays constant at its original mean value from the 

first time point through the last time point. Then, the area under this flat line gives the baseline, and its 

variability can be expressed by using the standard deviation of those measurements.  This makes sense 

for data that do not generally return to baseline, such as during chronic dosing of a drug in which late 

measurements are typically different than early measurements. 

The second definition applies in the case where data exhibits a perturbation followed by a return to 

baseline, such as in acute dosing of a drug when enough time is given to ensure that washout occurs. 

Measurements from the beginning and the end of the time series can be used to estimate the true 

baseline.  In these cases, the baseline is estimated by averaging the replicates at the first and last time 

points and finding the area under the line between them. The error in the baseline is calculated from the 

standard deviation of these replicates. The main advantage of this relative to the first definition is that 

experiments typically have a low number of replicates for each measurement, so by taking the first and 

last time points into account a significantly more accurate estimate for the baseline can be obtained. 
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The third definition can only be applied in cases where measurements for a separate control group are 

available at each time point. If these measurements are available, then they represent an excellent 

estimate of the baseline. In the case where the baseline varies (for example, when regulated by 

circadian rhythms), the ratio of the treated and control AUCs can be computed (Wolfsegger 2007). 

Estimating the AUC and its error 

The AUCs and confidence intervals are calculated by bootstrapping (Bonate 1998). This method is 

described in the following steps: 

1. For each data point, sample with replacement from all of the data points measuring the same 

response (i.e. gene expression value, drug concentration, etc.) at the same time. 

2. Calculate the AUC of the resampled data. 

3. Repeat steps 1 and 2 many times until the distribution of AUC values converges. 

4. From this bootstrap distribution, calculate the mean AUC and the desired percentile confidence 

interval. 

This procedure is based on the pooled data bootstrapping approach, which has been shown to 

accurately estimate pharmacokinetic parameters (Mager and Goller 1998). As the experimental data 

used in this study comes from destructive sampling, dependence within a replicate across time is not 

considered; for experiments in which an individual is repeatedly sampled over time, the resamplings 

should take this dependence into account. 

In step 2, the AUC is estimated by using the trapezoidal rule on the means of the replicates at each time 

point ti where i=1,…,m and Ci is the average expression value for each time point after the resampling in 

step 1. Then, the AUC for this resampled data is given by 

 1

2 12

1

1 12

1

12

(

( ), 2,..., 1

), 1

),(

i i i

m m

t

t t i m

t t

t i

w

i m

 



 

  


  






 (1) 

 

1

.
m

i i

i

AUC wC


  (2) 

 
In all of the results shown here (on both synthetic and real data), the number of resamplings performed 

(step 3) is 10000. This is well above the point by which the bootstrap distribution has converged, 

ensuring that the output generated in step 4 is stable. 

To calculate the baseline, studies using baseline methods 1 and 2 (considering only the first time point 

or the first and final time points) likely will not have enough points to allow for a relatively smooth 
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bootstrap distribution. As fewer data points are available, discreteness in the bootstrap distribution 

leads to biased confidence intervals (Bonate 1998). Thus, in these cases, the confidence interval is 

determined by assuming a normal distribution for the areas and using Bailer's method to calculate the 

variance. Bailer’s method is a direct calculation of the variance of the AUC, where σi is the standard 

deviation of the expression values at time i for a given measure and ri is the number of replicates (Bailer 

1988). 

 2

1

2 2
m

i

iA

i i

UC
r

w




 
  

 
  (3) 

 
The above formulas for calculating AUC and its variance are taken over the interval [0, tm]. However, if a 

response is known not to be resolved by tm, these calculations can be further extrapolated. For instance, 

in a single bolus dose experiment, drug concentration can often be assumed to exponentially decay 

after tm; applying this knowledge allows for the calculation of AUC over the interval [0, ∞], which may be 

a more appropriate metric in this particular case (Yuan 1993). In general, for gene expression and other 

types of data, such a relationship cannot be assumed, so the more conservative estimate over [0, tm] 

should be used. 

Calculating the AUC for biphasic responses 

Gene expression data often contains biphasic or multiphasic responses. For instance, consider the data 

shown in Fig. 1. In the first gene, there is early down-regulation followed by late up-regulation before a 

return to baseline at the final time point. If the AUC and baseline estimates for these data were 

calculated as described above, they would be approximately the same because the deviations in gene 

expression caused by the up-regulation and down-regulation are of similar magnitudes.  This would 

result in this gene not being selected as having a significant change from baseline. 
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This is seldom a problem in traditional applications of AUC in pharmacology because typically drug 

responses only go either up or down and then return to baseline. Occasionally, the occurrence of 

rebound is a complication in pharmacodynamics (Sharma, Ebling et al. 1998). But for gene expression 

data, up-regulation and down-regulation often occur sequentially, producing biphasic profiles. Thus, the 

trapezoidal rule is modified such that areas cannot be negative. In other words, the area above baseline 

is added to the area below baseline, and both of those areas are positive numbers. Algorithmically, this 

is accomplished by finding the point at which an interpolating line between two time points crosses the 

baseline value, and then calculating the area separately for the parts on the left and right of that point. 

This results in a large overall AUC for the genes in Fig. 1. 

Selection of large AUCs 

After calculating the baseline, the AUC, and their confidence intervals, these values are compared to 

determine if there is a significant difference between the baseline and the AUC. This is done by testing if 

the AUC confidence interval overlaps the baseline confidence interval. For all of the results shown in this 

paper, confidence intervals of 80% were used. 

Detection of up/down/biphasic AUCs 

Because the proposed algorithm for calculating AUC accounts for both positive and negative deviations 

from baseline, it is possible to distinguish between up-regulation, down-regulation, and biphasic 

 
Fig. 1: Gene expression values for two genes are shown along with the average value at each time 
point (solid lines) and their baseline values (dashed lines). Left: The Hal gene shows acute 
downregulation followed by a rebound above baseline. Right: The Nudt4 gene shows a similar but 
inverted biphasic expression profile. By calculating the up-area and down-area separately, and then 
adding their absolute values, a more complete measure of the deviation from baseline is obtained.  
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responses. In the calculation of AUC, positive and negative contributions to AUC are tabulated 

separately. Then, the ratio between these AUC components and baseline variability is calculated, in 

keeping with the overarching idea that the magnitude of change relative to baseline is of interest. In the 

case when there is a response only in one direction followed by a return to baseline, then only one of 

the positive and negative AUCs will be large. If there are both large positive and large negative AUCs, 

this indicates a biphasic response. 

After the significantly large AUCs are found as described above, biphasic responses are identified as 

those where the positive area is within 50% of the negative area and vice versa. Then, the remaining 

responses are classified as either up-regulation or down-regulation depending on whether the positive 

AUC or negative AUC is greater. 

Synthetic data 

Indirect response (IDR) models are widely used to represent inhibitory and stimulatory effects where the 

direct action of drugs is on a production or loss process (Krzyzanski and Jusko 1998; Woo, Pawaskar et 

al. 2009). Synthetic data were generated based on IDR model III, which models the indirect stimulatory 

effect R of a drug on kin with the drug having an exponentially decaying concentration C(t). 
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In these formulas, R0 = kin/kout is the initial response, Smax is the maximum effect, SC50 is the drug 

concentration producing 50% of the maximum effect, D is the intravenous dose, V is the volume, and CL 

is the clearance. For the synthetic data used in this study, parameter values of R0 = 50, CL = 2.5, D = 

10,000, V = 4, Smax = 5, SC50 = 4, kout = 0.4, and kin = 20 were used, as in (Woo, Pawaskar et al. 2009). R(t) is 

sampled at the same time points as in the experimental data described below: 0, 0.25, 0.5, 0.75, 1, 2, 4, 

5, 5.5, 6, 7, 8, 12, 18, 30, 48, and 72 hours. Qualitatively, this model shows an early up-regulation 

followed by a return to baseline. Therefore, the baseline value can be estimated by the measurements 

at the first and last time points. After the profile was generated for a given set of parameters, Gaussian 

noise with with a constant relative standard deviation (RSD) was added to generate an ensemble of 

noisy profiles. Noise is added based on the RSD, rather than using noise with the same standard 

deviation despite the current value of the signal, to simulate biological data in which there is a 

relationship between mean value and noise. 
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Acute corticosteroid gene responses 

In addition to the results obtained 

by using synthetic data in various 

conditions, the proposed 

algorithm was also run on real 

gene expression data to assess its 

ability to select biologically 

relevant genes. The data contains 

the transcriptional response of rat 

liver to a bolus dose of 50 mg/kg 

methylprednisolone (MPL) (Jin, 

Almon et al. 2003). It is available in 

the Gene Expression Omnibus 

(GEO) database (Barrett, Troup et 

al. 2009) with accession number 

GDS253. Forty-three male 

adrenalectomized Wistar rats were 

sacrificed at 16 time points: 0.25, 

0.5, 0.75, 1, 2, 4, 5, 5.5, 6, 7, 8, 12, 

18, 30, 48, and 72 hours after 

dosing; in addition, 4 more rats were sacrificed at 0 hours as a control group. Isolated RNA from each rat 

liver was hybridized to Affymetrix Rat Genome U34A microarrays to measure the expression values of 

8,799 probe sets. This dataset generally consists of genes that have acute responses to the drug and 

eventually return to their original expression values. So, like for the synthetic data, the baseline value is 

estimated by taking the values of the replicates at the first and last time points. A confidence interval of 

80% is used as the cutoff for determining significant AUC values. 

Results 

Synthetic data 

Here 5000 synthetic profiles were generated based on the IDR model and 5000 flat profiles were 

created to simulate data with no time dependence. Gaussian noise, with RSD equal to 0.2, 0.4, 0.8, and 

1.6, was added to the profiles to create four synthetic datasets with varying levels of noise, Fig. 2. To 

test the ability of the proposed algorithm to distinguish between these two classes, a receiver operating 

characteristic (ROC) curve was generated by varying the confidence interval cutoff from 0 to 1 and 

calculating the number of false positives and true positives in each scenario, as shown in Fig. 3. The 

dotted diagonal line represents the curve that would appear in the case of random guessing. This 

 
Fig. 2: Synthetic data generated for indirect response versus 
time profiles with four different noise levels at a single drug 
dose, D = 10,000. 
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procedure was repeated for RSDs 

of 0.2, 0.4, 0.8, and 1.6. As the 

noise increases, the ROC curves 

move closer to the dashed line, but 

even at the highest noise level, the 

proposed algorithm still can 

somewhat distinguish between the 

two classes. 

In these simulations, the drug dose 

was kept constant at D = 10,000. 

To investigate what happens as 

the drug concentration is changed, 

synthetic data were generated for 

values of D ranging from 10 to 

1,000,000 as shown in Fig. 4. These 

profiles were run through the 

proposed selection algorithm to 

see what value of D is necessary to 

create an AUC that is significantly 

larger than baseline. Fig. 5 shows 

how the response of the proposed 

algorithm changes at these different initial drug concentrations. The black histogram represents all 

genes and the gray histogram represents selected genes. If the algorithm was perfectly able to 

determine that these genes all deviate from their baseline values, the two histograms would completely 

overlap. 

Acute corticosteroid responses 

When the algorithm is run on the acute corticosteroid dataset with a confidence interval cutoff of 80% 

and using the first and last time points to estimate the baseline, 345 genes have significantly large AUCs 

when compared with their baseline values. Biphasic responses are detected in many of these significant 

genes.  The 33 genes that have both large positive and negative AUCs are shown in Table I along with 

the positive and negative contributions to AUC for each gene. Of the non-biphasic genes with 

significantly large AUCs, 139 are up-regulated and 173 are down-regulated based on the magnitude of 

their positive and negative AUCs. A full list of these genes, along with their positive and negative AUCs, 

is available as supplementary material. 

 

 
Fig. 3: ROC curve showing the ability of the proposed algorithm 
to accurately discover genes with an underlying time-
dependent pattern  with random noise at several relative 
standard deviations (RSD). RSD=0.2, AUROC=1; RSD=0.4, 
AUROC=0.995; RSD=0.8, AUROC=0.944; RSD=1.6, 
AUROC=0.839. 
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Discussion 

Fig. 5 shows how the proposed method is able to discover significant AUCs over baseline values for a 

range of drug doses. At very low drug doses, it is impossible to distinguish between the two classes. As D 

increases, the algorithm performs better, but is still misses many genes. Interestingly, the significant 

genes are only slightly biased towards having higher than normal AUCs. This is because of the influence 

of the baseline value on the result of the significance test. If the measurements at the first and last time 

point are very close together, then the baseline estimate will have a very tight confidence interval. In 

these cases, the AUC estimate can be lower and still be called significant. But when there is a substantial 

uncertainty in the baseline value, only a very high AUC will be sufficiently greater than the baseline 

confidence interval. The critical importance of the baseline estimate on the output of this algorithm is a 

key difference between this AUC method and traditional gene expression significance tests. When 

considering a significance test designed to select patterns from high-dimensional data, it is important to 

consider the prevalence of false positives in the output (Storey and Tibshirani 2003). As a trivial 

example, running 1000 hypothesis tests at a p-value cutoff of 0.05 should lead to the rejection of the 

null hypothesis 50 times, given random data. The proposed algorithm does select a small number of 

genes from high-dimensional microarray data; however, when applying the algorithm to random data of 

the same size as the real experimental data, only ~10% as many genes are selected, suggesting that the 

vast majority of identified patterns do not arise by chance. Furthermore, biphasic responses are even 

less likely to arise by chance, with only ~5% as many biphasic genes detected in random data as in real  

 
Fig. 4: Synthetic data generated for indirect response versus time profiles with  6 different dose (D) 
levels, all with the same amount of noise, RSD=0.8. 
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data; this is likely because it is highly unlikely for equally large random perturbations to occur in both 

directions relative to baseline. 

Bootstrapping is used to calculate the AUCs and their confidence intervals. While this is more 

computationally intensive and complex than a parametric calculation of the confidence interval, AUC 

values in general cannot always be accurately modeled by a normal distribution. To assuage its 

computational cost, the bootstrapping algorithm is parallelized (supplementary material, 

auc_bootstrap.m), which is important given that parallel processing capabilities are becoming 

uniquitous due to cheap multicore processors, even for researchers without access to dedicated 

computing facilities. Therefore, the increased complexity of nonparametric techniques such as 

bootstrapping is less of a concern than one might initially imagine. 

While variability in AUC has previously been considered in the literature (Yuan 1993; Bonate 1998; 

Wolfsegger and Jaki 2005), this work considers this variability with respect to uncertainty in the baseline 

measurement which is of importance in any pharmacokinetic profile or pharmacodynamic response that 

does not have a baseline of exactly zero. The baseline has been incorporated into AUC calculation in the 

case when baseline measurements from a control group are available at all time points (Jaki, Wolfsegger 

et al. 2009), but the proposed method is flexible in that baseline is determined from any available 

experimental data even if it is just a single time point at t=0. 

 
Fig. 5: Histograms of the AUCs of the synthetic data for various values of D given the same noise level 
RSD=0.8. The black histogram shows all of the synthetic genes, while the gray histogram shows only 
the significant synthetic genes. When the gray histogram is small, that means that few genes are 
selected by the algorithm. If all genes were selected, the black and gray histograms would overlap 
entirely. 
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An advantage of the proposed algorithm is that it can automatically detect biphasic responses (such as 

those shown in Fig. 1) that have large positive and negative deviations from baseline. Table I lists the 

genes that were found to have large positive and negative deviations from baseline and Fig. 1 displays 

the time course plots of two of those selected genes. In the absence of the separate calculation of 

positive and negative AUCs, the AUC would be calculated as the difference between those two values. 

For the identified biphasic genes, these values are given in the last two columns of Table I. In each case, 

the positive and negative AUCs are sufficiently close that they would almost completely cancel out if 

they were not calculated separately. Because the genes in Table I were selected by calculating the AUCs 

relative to variable baselines, the positive and negative areas represent significant deviations from 

baseline. Without taking this variability into account, a signal that just oscillated above and below its 

baseline value due to random noise might be identified as having both positive and negative AUC values; 

but, since those oscillations would be small compared to the baseline variability, that signal would not 

be selected as having biphasic characteristics. Thus, the calculation of AUC compared to baseline can 

automatically detect biphasic responses. However, for general gene expression analysis, it does not 

perform as well as domain-specific algorithms such as EDGE (Leek, Monsen et al. 2006) for the task of 

identifying differentially expressed genes (data not shown). The proposed algorithm is unique in that is 

can search directly for biphasic responses, thus effectively performing some classification 

(up/down/biphasic) of the responses at the same time as testing for significant deviations in AUC 

relative to baseline. 

Caution is needed when applying any AUC calculation method to incomplete pharmacodynamic data. 

Unlike pharmacokinetics which usually exhibits a monoexponential terminal phase allowing easy 

extrapolation to time infinity, the return phase for dynamic data to baseline is nearly, but not exactly 

linear (i.e. ∆R/∆t = constant) (Krzyzanski and Jusko 1998). 

The proposed method of calculating the AUC relative to a variable baseline can be applied in discovering 

significant differentially expressed genes, as an alternative to existing methods, and also to determining 

specifically which genes are up-regulated, down-regulated, and biphasic. As with noncompartmental 

methods in pharmacokinetics, this type of analysis should have value in screening large data sets and as 

a preliminary step before application of specific models with use of more sophisticated regression 

software. Furthermore, its utility is not restricted to data from microarray experiments. The proposed 

method can characterize the AUC for any time series data with a non-constant baseline as is 

commonplace in pharmacodynamics. An implementation of this algorithm in MATLAB is available as 

supplementary material. 
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Tables 
Table I: Positive and negative contributions to the AUC for genes with biphasic responses 

Gene name Accession no. Positive AUC Negative AUC 

Hal AB002393_g_at 8.72 11.81 
Inhbe /// LOC497821 AF089825_at 5.26 7.77 
Mosc2 AF095741_at 9.77 8.60 
Mosc2 AF095741_g_at 5.85 6.82 
Cyb5r3 D00636Poly_A_Site#1_s_at 5.64 10.73 
Csda D28557_s_at 8.41 6.05 
Psmc4 D50695_at 5.32 9.81 
Abcc2 D86086_s_at 7.95 7.29 
Psma2 E03358cds_g_at 5.19 3.63 
Eif2s1 J02646_at 3.44 6.58 
Tpm4 J02780_at 5.66 4.45 
Nr1d1 M25804_g_at 5.50 10.70 
Agtr1a M86912exon_g_at 3.57 6.53 
Vhl rc_AA799545_at 6.99 11.60 
Rara rc_AA799779_g_at 7.50 7.90 
Serbp1 rc_AA800678_g_at 14.95 9.01 
Akap12 rc_AA859966_i_at 12.22 8.77 
Phb2 rc_AA875054_at 3.74 2.32 
Pxmp2 rc_AA875639_at 8.35 6.35 
Cct3 rc_AA891107_at 8.98 8.11 
Gnpat rc_AA894174_g_at 3.14 2.47 
LOC363328 rc_AA894305_at 8.90 5.34 
 rc_AA943892_at 3.69 4.55 
Tcp1 rc_AI104500_at 7.60 3.96 
Zadh2_predicted rc_AI229637_at 5.52 5.78 
Nudt4 rc_AI237535_s_at 4.54 7.33 
Etfa rc_AI639026_at 3.97 2.35 
RGD1308373 U14746_at 5.47 10.72 
Agt U15211_g_at 5.97 6.86 
Entpd1 U21718mRNA_at 4.74 8.07 
Mybbp1a U23146cds_s_at 8.32 9.81 
Litaf U75392_s_at 3.66 2.14 
 X70223_at 5.68 8.20 

Positive and negative AUC contributions for the 33 genes identified as having biphasic responses are 

listed. AUC values have units of log(intensity)*hr, where the intensity value is calculated from the 

microarray experiments. 


